1
0
mirror of https://github.com/soarqin/DSP_Mods_TO.git synced 2025-12-17 03:53:27 +08:00

update compression libraries, while formating codes

This commit is contained in:
2025-07-21 16:31:56 +08:00
parent 3cc1dfa750
commit 45a7552471
18 changed files with 1666 additions and 788 deletions

View File

@@ -1,7 +1,7 @@
/*
* LZ4 - Fast LZ compression algorithm
* Header File
* Copyright (C) 2011-2020, Yann Collet.
* Copyright (c) Yann Collet. All rights reserved.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
@@ -129,8 +129,8 @@ extern "C" {
/*------ Version ------*/
#define LZ4_VERSION_MAJOR 1 /* for breaking interface changes */
#define LZ4_VERSION_MINOR 9 /* for new (non-breaking) interface capabilities */
#define LZ4_VERSION_RELEASE 4 /* for tweaks, bug-fixes, or development */
#define LZ4_VERSION_MINOR 10 /* for new (non-breaking) interface capabilities */
#define LZ4_VERSION_RELEASE 0 /* for tweaks, bug-fixes, or development */
#define LZ4_VERSION_NUMBER (LZ4_VERSION_MAJOR *100*100 + LZ4_VERSION_MINOR *100 + LZ4_VERSION_RELEASE)
@@ -144,23 +144,25 @@ LZ4LIB_API const char* LZ4_versionString (void); /**< library version string;
/*-************************************
* Tuning parameter
* Tuning memory usage
**************************************/
#define LZ4_MEMORY_USAGE_MIN 10
#define LZ4_MEMORY_USAGE_DEFAULT 14
#define LZ4_MEMORY_USAGE_MAX 20
/*!
* LZ4_MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; )
* Increasing memory usage improves compression ratio, at the cost of speed.
* Can be selected at compile time, by setting LZ4_MEMORY_USAGE.
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB)
* Increasing memory usage improves compression ratio, generally at the cost of speed.
* Reduced memory usage may improve speed at the cost of ratio, thanks to better cache locality.
* Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
* Default value is 14, for 16KB, which nicely fits into most L1 caches.
*/
#ifndef LZ4_MEMORY_USAGE
# define LZ4_MEMORY_USAGE LZ4_MEMORY_USAGE_DEFAULT
#endif
/* These are absolute limits, they should not be changed by users */
#define LZ4_MEMORY_USAGE_MIN 10
#define LZ4_MEMORY_USAGE_DEFAULT 14
#define LZ4_MEMORY_USAGE_MAX 20
#if (LZ4_MEMORY_USAGE < LZ4_MEMORY_USAGE_MIN)
# error "LZ4_MEMORY_USAGE is too small !"
#endif
@@ -191,7 +193,7 @@ LZ4LIB_API int LZ4_compress_default(const char* src, char* dst, int srcSize, int
/*! LZ4_decompress_safe() :
* @compressedSize : is the exact complete size of the compressed block.
* @dstCapacity : is the size of destination buffer (which must be already allocated),
* is an upper bound of decompressed size.
* presumed an upper bound of decompressed size.
* @return : the number of bytes decompressed into destination buffer (necessarily <= dstCapacity)
* If destination buffer is not large enough, decoding will stop and output an error code (negative value).
* If the source stream is detected malformed, the function will stop decoding and return a negative result.
@@ -243,23 +245,25 @@ LZ4LIB_API int LZ4_compress_fast (const char* src, char* dst, int srcSize, int d
LZ4LIB_API int LZ4_sizeofState(void);
LZ4LIB_API int LZ4_compress_fast_extState (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_compress_destSize() :
* Reverse the logic : compresses as much data as possible from 'src' buffer
* into already allocated buffer 'dst', of size >= 'targetDestSize'.
* into already allocated buffer 'dst', of size >= 'dstCapacity'.
* This function either compresses the entire 'src' content into 'dst' if it's large enough,
* or fill 'dst' buffer completely with as much data as possible from 'src'.
* note: acceleration parameter is fixed to "default".
*
* *srcSizePtr : will be modified to indicate how many bytes where read from 'src' to fill 'dst'.
* *srcSizePtr : in+out parameter. Initially contains size of input.
* Will be modified to indicate how many bytes where read from 'src' to fill 'dst'.
* New value is necessarily <= input value.
* @return : Nb bytes written into 'dst' (necessarily <= targetDestSize)
* @return : Nb bytes written into 'dst' (necessarily <= dstCapacity)
* or 0 if compression fails.
*
* Note : from v1.8.2 to v1.9.1, this function had a bug (fixed in v1.9.2+):
* the produced compressed content could, in specific circumstances,
* require to be decompressed into a destination buffer larger
* by at least 1 byte than the content to decompress.
* Note : 'targetDstSize' must be >= 1, because it's the smallest valid lz4 payload.
*
* Note 2:from v1.8.2 to v1.9.1, this function had a bug (fixed in v1.9.2+):
* the produced compressed content could, in rare circumstances,
* require to be decompressed into a destination buffer
* larger by at least 1 byte than decompressesSize.
* If an application uses `LZ4_compress_destSize()`,
* it's highly recommended to update liblz4 to v1.9.2 or better.
* If this can't be done or ensured,
@@ -267,8 +271,7 @@ LZ4LIB_API int LZ4_compress_fast_extState (void* state, const char* src, char* d
* a dstCapacity which is > decompressedSize, by at least 1 byte.
* See https://github.com/lz4/lz4/issues/859 for details
*/
LZ4LIB_API int LZ4_compress_destSize (const char* src, char* dst, int* srcSizePtr, int targetDstSize);
LZ4LIB_API int LZ4_compress_destSize(const char* src, char* dst, int* srcSizePtr, int targetDstSize);
/*! LZ4_decompress_safe_partial() :
* Decompress an LZ4 compressed block, of size 'srcSize' at position 'src',
@@ -312,7 +315,7 @@ LZ4LIB_API int LZ4_decompress_safe_partial (const char* src, char* dst, int srcS
***********************************************/
typedef union LZ4_stream_u LZ4_stream_t; /* incomplete type (defined later) */
/**
/*!
Note about RC_INVOKED
- RC_INVOKED is predefined symbol of rc.exe (the resource compiler which is part of MSVC/Visual Studio).
@@ -362,13 +365,58 @@ LZ4LIB_API void LZ4_resetStream_fast (LZ4_stream_t* streamPtr);
* LZ4_loadDict() triggers a reset, so any previous data will be forgotten.
* The same dictionary will have to be loaded on decompression side for successful decoding.
* Dictionary are useful for better compression of small data (KB range).
* While LZ4 accept any input as dictionary,
* results are generally better when using Zstandard's Dictionary Builder.
* While LZ4 itself accepts any input as dictionary, dictionary efficiency is also a topic.
* When in doubt, employ the Zstandard's Dictionary Builder.
* Loading a size of 0 is allowed, and is the same as reset.
* @return : loaded dictionary size, in bytes (necessarily <= 64 KB)
* @return : loaded dictionary size, in bytes (note: only the last 64 KB are loaded)
*/
LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, int dictSize);
/*! LZ4_loadDictSlow() : v1.10.0+
* Same as LZ4_loadDict(),
* but uses a bit more cpu to reference the dictionary content more thoroughly.
* This is expected to slightly improve compression ratio.
* The extra-cpu cost is likely worth it if the dictionary is re-used across multiple sessions.
* @return : loaded dictionary size, in bytes (note: only the last 64 KB are loaded)
*/
LZ4LIB_API int LZ4_loadDictSlow(LZ4_stream_t* streamPtr, const char* dictionary, int dictSize);
/*! LZ4_attach_dictionary() : stable since v1.10.0
*
* This allows efficient re-use of a static dictionary multiple times.
*
* Rather than re-loading the dictionary buffer into a working context before
* each compression, or copying a pre-loaded dictionary's LZ4_stream_t into a
* working LZ4_stream_t, this function introduces a no-copy setup mechanism,
* in which the working stream references @dictionaryStream in-place.
*
* Several assumptions are made about the state of @dictionaryStream.
* Currently, only states which have been prepared by LZ4_loadDict() or
* LZ4_loadDictSlow() should be expected to work.
*
* Alternatively, the provided @dictionaryStream may be NULL,
* in which case any existing dictionary stream is unset.
*
* If a dictionary is provided, it replaces any pre-existing stream history.
* The dictionary contents are the only history that can be referenced and
* logically immediately precede the data compressed in the first subsequent
* compression call.
*
* The dictionary will only remain attached to the working stream through the
* first compression call, at the end of which it is cleared.
* @dictionaryStream stream (and source buffer) must remain in-place / accessible / unchanged
* through the completion of the compression session.
*
* Note: there is no equivalent LZ4_attach_*() method on the decompression side
* because there is no initialization cost, hence no need to share the cost across multiple sessions.
* To decompress LZ4 blocks using dictionary, attached or not,
* just employ the regular LZ4_setStreamDecode() for streaming,
* or the stateless LZ4_decompress_safe_usingDict() for one-shot decompression.
*/
LZ4LIB_API void
LZ4_attach_dictionary(LZ4_stream_t* workingStream,
const LZ4_stream_t* dictionaryStream);
/*! LZ4_compress_fast_continue() :
* Compress 'src' content using data from previously compressed blocks, for better compression ratio.
* 'dst' buffer must be already allocated.
@@ -546,9 +594,9 @@ LZ4_decompress_safe_partial_usingDict(const char* src, char* dst,
#define LZ4_STATIC_3504398509
#ifdef LZ4_PUBLISH_STATIC_FUNCTIONS
#define LZ4LIB_STATIC_API LZ4LIB_API
# define LZ4LIB_STATIC_API LZ4LIB_API
#else
#define LZ4LIB_STATIC_API
# define LZ4LIB_STATIC_API
#endif
@@ -564,36 +612,11 @@ LZ4_decompress_safe_partial_usingDict(const char* src, char* dst,
*/
LZ4LIB_STATIC_API int LZ4_compress_fast_extState_fastReset (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_attach_dictionary() :
* This is an experimental API that allows
* efficient use of a static dictionary many times.
*
* Rather than re-loading the dictionary buffer into a working context before
* each compression, or copying a pre-loaded dictionary's LZ4_stream_t into a
* working LZ4_stream_t, this function introduces a no-copy setup mechanism,
* in which the working stream references the dictionary stream in-place.
*
* Several assumptions are made about the state of the dictionary stream.
* Currently, only streams which have been prepared by LZ4_loadDict() should
* be expected to work.
*
* Alternatively, the provided dictionaryStream may be NULL,
* in which case any existing dictionary stream is unset.
*
* If a dictionary is provided, it replaces any pre-existing stream history.
* The dictionary contents are the only history that can be referenced and
* logically immediately precede the data compressed in the first subsequent
* compression call.
*
* The dictionary will only remain attached to the working stream through the
* first compression call, at the end of which it is cleared. The dictionary
* stream (and source buffer) must remain in-place / accessible / unchanged
* through the completion of the first compression call on the stream.
/*! LZ4_compress_destSize_extState() : introduced in v1.10.0
* Same as LZ4_compress_destSize(), but using an externally allocated state.
* Also: exposes @acceleration
*/
LZ4LIB_STATIC_API void
LZ4_attach_dictionary(LZ4_stream_t* workingStream,
const LZ4_stream_t* dictionaryStream);
int LZ4_compress_destSize_extState(void* state, const char* src, char* dst, int* srcSizePtr, int targetDstSize, int acceleration);
/*! In-place compression and decompression
*
@@ -677,10 +700,10 @@ LZ4_attach_dictionary(LZ4_stream_t* workingStream,
#if defined(__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# include <stdint.h>
typedef int8_t LZ4_i8;
typedef uint8_t LZ4_byte;
typedef uint16_t LZ4_u16;
typedef uint32_t LZ4_u32;
typedef int8_t LZ4_i8;
typedef unsigned char LZ4_byte;
typedef uint16_t LZ4_u16;
typedef uint32_t LZ4_u32;
#else
typedef signed char LZ4_i8;
typedef unsigned char LZ4_byte;
@@ -705,7 +728,7 @@ struct LZ4_stream_t_internal {
/* Implicit padding to ensure structure is aligned */
};
#define LZ4_STREAM_MINSIZE ((1UL << LZ4_MEMORY_USAGE) + 32) /* static size, for inter-version compatibility */
#define LZ4_STREAM_MINSIZE ((1UL << (LZ4_MEMORY_USAGE)) + 32) /* static size, for inter-version compatibility */
union LZ4_stream_u {
char minStateSize[LZ4_STREAM_MINSIZE];
LZ4_stream_t_internal internal_donotuse;
@@ -726,7 +749,7 @@ union LZ4_stream_u {
* Note2: An LZ4_stream_t structure guarantees correct alignment and size.
* Note3: Before v1.9.0, use LZ4_resetStream() instead
**/
LZ4LIB_API LZ4_stream_t* LZ4_initStream (void* buffer, size_t size);
LZ4LIB_API LZ4_stream_t* LZ4_initStream (void* stateBuffer, size_t size);
/*! LZ4_streamDecode_t :
@@ -838,11 +861,12 @@ LZ4_DEPRECATED("use LZ4_decompress_fast_usingDict() instead") LZ4LIB_API int LZ4
* But they may happen if input data is invalid (error or intentional tampering).
* As a consequence, use these functions in trusted environments with trusted data **only**.
*/
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe() instead")
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_partial() instead")
LZ4LIB_API int LZ4_decompress_fast (const char* src, char* dst, int originalSize);
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_continue() instead")
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider migrating towards LZ4_decompress_safe_continue() instead. "
"Note that the contract will change (requires block's compressed size, instead of decompressed size)")
LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int originalSize);
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_usingDict() instead")
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_partial_usingDict() instead")
LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int originalSize, const char* dictStart, int dictSize);
/*! LZ4_resetStream() :